
ISSN: Volume 1 issue 1

GREENDROID
Diagnosis of Efficient Energy Usage for Smartphone Applications

Vishal Kulkarni1, Amitkumar Meena2, Simran Gupta3, Prof. Dhanashree Kanade4

1-3 Students, 4Assistant Professor
Department Of Computer Engineering

K.C. College of Engineering & Management studies & Research,
Kopri,Thane (E)-400 603, India.

Abstract -Nowadays the main problem or the major issue we face while using a smart
phone is the rigorous and fast exhausting battery of the mobile. This causes a lot of problems
for the people who utilise their phone for long durations. This paper aims to address this
problem. We propose an idea to address this problem by our Android application Greendroid.
Today the mobile application developers do not pay special attention to the energy consumed by
the application thus resulting in the poor performance of the application beacause of vast
comsumption of energy. Greendroid proposes to monitor the energy consumed and give a real
time diagnosis of battery usage.

Keywords – Sensors, wake locks, Java Path finder(JPF), Energy Inefficient.

I. INTRODUCTION

There are tons of mobile applications readily available for various purposes like location
determination or chatting applications. The internet based mobile applications connect the
physical and cyber environments and together they provide smart services to the user. However
unlike our desktop computers and other counterparts the mobile phones have resource constrained
platforms. Due to these constraints in smart phones even the smallest of inefficiencies can lead to
a bad user experience. Mobile developers need to ensure a satisfying experience for the users
especially because the smart phone applications have requirements like seamless communication,
frequent sensing of the environment and infinite computation. Even a small amount of ignorance
of any of one these three factors can lead to very high energy consumption by the mobile
application.

Mobile developers nowadays rarely have sufficient time or resources to carefully optimize
the energy consumption and this is the main reason why so many applications suffer from energy
and performance bugs. Energy bugs waste a lot of battery power and performance bugs
significantly reduce the smart phones’ responsiveness. Locating of energy bug is difficult in
android applications. We have to rigorously test the application on various platforms and it is time
consuming.

Energy inefficiency related problems can vary according to the different applications and
the main issues in majority of the problems are related to wake lock deactivation and sensory data
underutilization.

Wake lock Deactivation: When the phone is idle the android device quickly falls asleep
but when making certain computations or performing certain activities like watching a movie or
playing video games the user acquires a wake lock from the android OS. Now this wake lock
should be unregistered as soon as the computation completes. Failing to do so results in a huge
loss of energy.

Sensory Data Underutilization: The android sensor framework lets you access various
types of in-built sensors that are capable of measuring motion, orientation, and various
environmental conditions. Some examples of sensors are gyroscope, accelerometer, temperature
sensor, proximity sensor etc.. The sensors are always enabled in the background. It is important to
make sure that the sensors are always disabled when they are not in use especially when the
activity is paused. Sensors judge their surroundings and collect data from the same. This data is
obtained at high energy cost and hence this data should be utilized effectively. If the data is
utilized poorly then it is equivalent to a wasting a huge amount of energy.

We tend to overcome this problem by analysing the performance of the application stage
by stage by executing it using Java Path Finder (JPF) (Fig. 1). Java Path Finder (JPF) acts like a
virtual machine which finds out all the possible ways to execute a program and checks the

possibility for any deadlocks or unhandled exceptions along all valid approaches. Also using Java
Path Finder we can monitor whether the application is using the sensors and wake locks
efficiently and they are getting released or unregistered or not.

Fig. 1. Java Path Finder (JPF)

II. ACTIVITY LIFE CYCLE

Since our main aim is to analyse each and every application we need to get familiarized with
the basic life cycle of each of its components. Hence, the activity life cycle study is a must.

Fig. 2 Activity Life cycle

2

Fig2. shows the life cycle of any activity. The life cycle of any activity starts from the
onCreate() function and ends on the onDestroy() function. The function onCreate() is called when
the activity is first created. The activity always works on the foreground. When the activity is
becoming visible to the user onStart() function is called. When it moves to the background and
becomes invisible to the user then the onStop() function is called. When the user moves back to
the paused or stopped activity then the activity’s onRestart() or onResume() function is called.
Amidst the running of the application an activity can be resumed, paused or killed in order to
release memory for the activities with higher priorities.

III. ENERGY EFFICIENCY DIAGNOSIS

In this section we will look towards our approach to solve this problem and diagnose the
energy inefficient applications.

A general approach to solving this problem is by using the Java byte code and
configuration files of the Android application which define its logic. Now this java byte code is
executed in Java Path Finders’ virtual machine and it is diagnosed or analysed step by step by
exploring all its states. During this exploration we monitor the sensor registrations and wake lock
acquisitions. We also monitor at which state the sensors are disabled or unregistered and the wake
locks are released. We then analyse how these sensory data is utilized at various stages of
execution of the application. At the end of this process a report is prepared which compares the
actual use of sensory data across all the stages of application processing and it is determined if the
sensory data is underutilized or not. We also check if the wake locks are forgotten to be released
or the sensors have been forgotten to be unregistered.

i. APPLICATION EXECUTION AND STATE EXPLORATION

An Android activity starts with a main activity and ends when all its components are destroyed.
During the execution of the application it keeps receiving the user interaction events and system
events by calling the registered Android application handlers. Every event changes the state of the
application by changing the program data. To explore the state space we need to generate user
interaction events and schedule the corresponding event handlers.

Generating User Interaction Events: Analysis of the configuration of the application can be
done using the GUI layouts of the activities. We map the GUI components to a possible set of
user activities. While execution the runtime controller uses the execution history and current state
and generates all possible events associated with each activity component.

ii. MISSING SENSOR OR WAKE LOCK DEACTIVATION:

 Missing sensor or wake lock deactivation is the major issue which results in huge amount of
energy inefficiency. According to the Android process management policy the sensors or wake
locks are not automatically deactivated even if the application components using them are
destroyed. This causes huge performance degradation. In short we diagnose the execution states
and make sure that the following two policies are never violated:
 Sensor Management Policy: A sensor listener l should be unregistered before any activity of
the application dies.
 Wake Lock management policy: A wake lock wl should be released before the activity of the
running application dies.

iii. SENSORY DATA UTILIZATION ANALYSIS

During the execution of an application some sensory data is collected and the same data is utilized
by different application activities by performing modifications. We determine if the data is used in

3

an energy efficient manner. We use the concept of Dynamic Tainting which includes three phases:
(1) Tainting each sensory data with a unique mark; (2) Communicating these taint marks through
various levels of application component stages; (3) Analyzing the utilization of sensory data at
different stages. We will view these stages in detail one by one.
Tainting Sensory Data

In this stage we use mock sensory data from an existing data pool. It is then fed to the
application activity after the event handlers are called. The reference to the object of each sensory
data is initialized with a unique taint mark before feeding it to the application. This data along
with the taint mark will propagate through the application activity for further analysis.
Propagating Taint Marks

While the application is running the tainted sensory data is transformed into various forms
by performing several arithmetic and relational operations. Here we track the taint marks and
identify which application component depends on what sensory data. This technique tracks the
Java byte code along with the taint marks in the Java Path Finders’ virtual machine. A key
advantage is that all the processing is done on the byte code level hence it does not require any
application specific program instrumentation.

The taint propagation terminates when the application utilizing the sensory event finishes. This
generally happens in two situations. Firstly, if the sensor event handler does not start any
operation to handle further received sensor events the communication of taint marks stops at the
end of this handler. Otherwise the propagation terminates only if all the operations of the
application components are terminated. Hence, in this way taint propagation identifies which part
of the activity is dependent on the collected sensory data and how efficiently they are put to use.

Theoretically, in multi-threading operations the taint propagation will only terminate when all
the worker threads end. However, practically this may take a toll on the device usability since the
taint propagation may take a huge amount of time and hence fails to generate an analysis report. A
solution to this problem is setting a timeout value for large duration of taint propagations.
Analysing Sensory Data Utilization

After the propagation of sensory data with taint marks, the program data is tainted and
now it is easy to analyse whether this data is utilized in energy efficient way or not.

Now we calculate the Data Utilization Coefficient (DUC) which is defined as the ratio
between the usage of sensory data d at activity state s and the maximal usage of sensory data from
our data pool D at any state Sb where b is the length of the user interaction event sequences.

Using this formula we can compare the usage of sensory data across different stages. Lower value
of DUC value indicates lower consumption of sensory data at that state.

The usage of the sensory data can be calculated using the following equation:

In the above mentioned equation API_Call(s,d) calculates the number of times API calls are
executed since the sensory data it fed to the application at states till data handling is finished. The

4

function eTest(i,d,s) is for effectiveness check and it returns a binary value. It returns 1 if the
following two conditions hold (1) The API call i uses program data dependant on the sensory
data. (2) The API’s execution holds benefits to the user. If any one of the condition does not
satisfy then it returns 0. Function noInst(i) returns the number of byte code instructions executed
by the API call. The main idea behind calculating the usage factor is to determine how many
times and to what extent the sensory data is used by an application to benefit the users.

Now we check how eTest(i,d,s) checks for effectiveness. For first condition we check if the
API called has the same data as the sensory data. For second condition we take an outcome based
strategy. According to this strategy if the API stores any data to file systems, database or network
or updates the phones’ status or passes any message for inter or intra application communication
then the API passes the test. Under this condition we make an assumption that the data stored in
the above mentioned ways will be beneficial to the user in one or other way.

IV. CONCLUSION

In this paper we presented the necessity of energy efficiency in smart phones and identified two
common phenomena that commonly affect the mobile battery and cause energy waste: missing
sensor or wake lock deactivation and sensory data underutilization. Based on these causes we
propose an approach for automated diagnosis of energy utilization in Android applications. Our
proposal examines the various stages an application component goes through and its usage of
sensory data and monitoring of wake locks. Using this it helps user to locate if the data is utilized
effectively and whether the sensors were deactivated, and wake locks were released.

V. ACKNOWLEDGEMENTS

We express our sincere gratitude to our co-guideProf. Kaushiki Upadhyaya and guide
Prof. Dhanashri Kanade whose supervision, inspiration and valuable guidance helped us a lot to
complete our work. Their guidance proved to be the most valuable to overcome all the hurdles in
the preparation of this paper work. Also we are thankful to all those who have helped us in the
completion of paper work.

VI. REFERENCES

[1] Yepang Liu, Chang Xu, S.C. Cheung, and Jian L, “GreenDroid: Automated Diagnosis of
Energy Inefficiency for Smartphone Applications”

Available:http://sccpu2.cse.ust.hk/andrewust/files/TSE2014.pdf
[2] Android Development Website [Online].
Available: https://developer.android.com/training/scheduling/wakelock.html
[3] Sensors Overview [Online].
Available: https://developer. android.com/guide/topics/sensors/sensors_overview.html
[4] Sensor Managers [Online].
Available: https://developer. android.com/guide/topics/sensors/sensors_overview.html
[5] Java Path Finder from NASA JavaPathFinder project [Online].
Available: https://nebelwelt.net/teaching/15510 -SE/slides/12-jpf-1.pdf
[6] Android Life Cycle [Online]. Available: https://www. javatpoint .com/android-life-cycle-of-

activity
[7] A.Maheswari, G.Muppidathi, R.Nandhini, G.Santhiya, “Automated Energy Problem Diagnosis

In Android Applications” [Online]. Available: http://www.ijetie.org/
articles/IJETIE_201513038.pdf

[8] Jue Wang, Yepang Liu, Chang Xu, Xiaoxing Ma and Jian Lu, “E-GreenDroid: Effective
Energy Inefficiency Analysis for Android Applications” [Online].

Available: http://sccpu2.cse.ust.hk/andrewust/files/Internetware2016.pdf

5

http://sccpu2.cse.ust.hk/andrewust/files/TSE2014.pdf
http://sccpu2.cse.ust.hk/andrewust/files/Internetware2016.pdf
http://www.ijetie.org/
https://nebelwelt.net/teaching/15510%20-SE/slides/12-jpf-1.pdf
https://developer.android.com/training/scheduling/wakelock.html

[9] James Newsome, Dawn Song, “Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software” [Online].

Available: http://valgrind.org/docs/newsome 2005.pdf

6

http://valgrind.org/docs/newsome

	1-3 Students, 4Assistant Professor
	Department Of Computer Engineering
	I. Introduction

